

Multi-rate Single Fiber Bi-Directional Gigabit Ethernet SFP Transceivers with Digital Diagnostics

Features

- ☑ Lead Free Design & Fully RoHS Compliant
- ☑ Compatible with SFP MSA
- ☑ Compatible with IEEE 802.3-2005 Gigabit Ethernet 1000BASE-BX PMD Specifications
- ☑ Wavelengths of 1310nm & 1550nm
- ☑ Digital Diagnostics through Serial Interface
- ☑ Internal Calibration for Digital Diagnostics
- ☑ Distances up to 40km
- ☑ Eye Safe (Class I Laser Safety)
- ☑ Duplex LC Optical Interface
- ☑ Hot-pluggable
- ☑ TX Fault & Loss of Signal Outputs
- ☑ TX Disable Input
- ☑ Single +3.3V Power Supply

Description

The TRXBG1EXM modules are single fiber, bi-directional SFP transceivers that provide a quick and reliable interface for 1000BASE-BX Gigabit Ethernet applications. Two types of modules are available: 1310nm DFB laser-based transceiver (BX-U), and 1550nm DFB laser-based transceivers (BX-D). These transceivers are designed to support data rates ranging from 1250Mb/s down to 125Mb/s and are integrated with digital diagnostics monitoring, which provides features to detect a problem before system performance is impacted. The diagnostic functions, alarms and warning features are provided via an I²C serial interface as described per the Multi-Source Agreement (MSA) document, SFF-8472 (Rev. 9.4).

All modules meet Class I Laser Safety requirements in accordance with the U.S. and international standards as described in the FDA/CDRH and IEC-60825 documents.

respectively. The TRXBG1EXM transceivers connect to standard 20-pad SFP connectors for hot plug capability. This allows the system designer to make configuration or maintenance changes by simply plugging in different types of transceivers without removing the power supply from the host system.

The transceivers have color-coded latches that identify the TX wavelength. The MSA compatible latch offers an easy and convenient way to release the module.

The transmitter and receiver DATA interfaces are AC-coupled internally. LV-TTL Transmitter Disable control input and Loss of Signal output interfaces are also provided.

The transceivers operate from a single +3.3V power supply over an operating case temperature range of -5°C to +70°C or -40°C to +85°C. The package is made of metal.

Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Units			
Storage Temperature		T_{st}	- 40	+ 85	°C		
Operating Code Temperature1	Commercial	T	- 5	+ 70	°C		
Operating Case Temperature ¹	Industrial	T_{op}	- 40	+ 85	C		
Supply Voltage		V_{CC}	0	+ 4.5	V		
Input Voltage		V_{in}	0	V_{CC}	V		
Lead Terminal Finish, Reflow Profile Limits and MSL		-	-	NA	-		
¹ Measured on top side of SFP module at the front center vent hole of the cage.							

 $\textbf{Transmitter Performance Characteristics} \ (\text{over Operating Case Temperature}, \ V_{CC} = 3.13 \ \text{to} \ 3.47 \ \text{V})$

Parame	eter	Symbol	Minimum	Typical	Maximum	Units
Operating Data Rate		В	125	-	1250	Mb/s
Optical Output Power ¹	BX-U	D	- 6.5	-	0	dBm
	BX-D	P_o	- 7.0	-	0	dBm
Contar Mayalangth	BX-U	1	1260	1310	1360	nm
Center Wavelength	BX-D	λ_c 1540	1540	1550	1560	
Spectral Width (-20dB)		$\Delta \lambda_{20}$	-	-	1.0	nm
Extinction Ratio		P_{hi}/P_{lo}	8	-	-	dB
Transmitter OFF Output Power		-	-	-	- 45	dBm
Relative Intensity Noise		RIN ₁₂ OMA	-	-	- 113	dB/Hz
Optical Return Loss Tolerance		ORLT	-	-	12	dB
Transmitter Reflectance		TR	-	-	- 12	dB
Total Jitter		TJ	-	-	227	ps
Transmitter Output Eye Compliant with Ey			with Eye Mask	Defined in IEE	E 802.3-2005	Standard
¹ Measured average power coupled into single mode fiber.						

Receiver Performance Characteristics (over Operating Case Temperature, V_{cc} = 3.13 to 3.47V)

Param	eter	Symbol	Minimum	Typical	Maximum	Units
Operating Data Rate		В	125	-	1250	Mb/s
Minimum Input Optical Power	Minimum Input Optical Power (10 ⁻¹² BER) ¹		- 23.5	-	-	dBm
Maximum Input Optical Power	(10 ⁻¹² BER ⁾¹	P_{max}	- 3.0	-	-	dBm
LOC Throoboldo	Increasing Light Input	P_{los+}	-	-	- 23.5	dD.m
LOS Thresholds	Decreasing Light Input	P_{los}	- 35.0	-	-	dBm
LOS Hysteresis ¹		-	0.5	-	-	dB
Total Jitter		TJ	-	-	266	ps
May along the of On a wation	BX-D	λ	1260	-	1360	
Wavelength of Operation	BX-U	1 1	1480	-	1560	nm
Receiver Reflectance		-	-	-	- 12	dB
Electrical 3dB Upper Cutoff Frequency		-	-	-	1500	MHz
¹ Measured at 1250Mb/s with 2 ⁷ -1 PRBS and 1310nm, 1490nm, and 1550nm wavelengths.						

Laser Safety: All transceivers are Class I Laser products per FDA/CDRH and IEC-60825 standards. They must be operated under specified operating conditions.

Optical Communication Products, Inc. DATE OF MANUFACTURE:

MANUFACTURED IN THE USA
This product complies with
21 CFR 1040.10 and 1040.11
Meets Class I Laser Safety Requirements

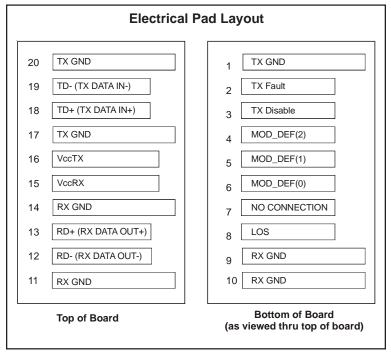
Transmitter Electrical Interface (over Operating Case Temperature, $V_{CC} = 3.13$ to 3.47V)

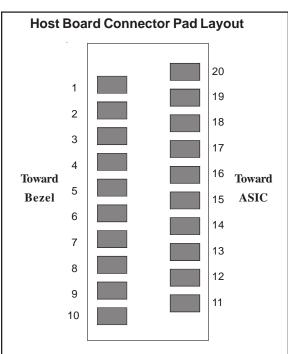
Parameter	Symbol	Minimum	Typical	Maximum	Units
Input Voltage Swing (TD+ & TD-)1	$V_{PP\text{-}DIF}$	0.5	-	2.4	V
Input HIGH Voltage (TX Disable) ²	V_{IH}	2.0	-	V_{CC}	V
Input LOW Voltage (TX Disable) ²	$V_{I\!L}$	0	-	0.8	V
Output HIGH Voltage (TX Fault) ³	V_{OH}	2.0	-	V _{CC} + 0.3	V
Output LOW Voltage (TX Fault) ³	V_{OL}	0	-	0.8	V

¹Differential peak-to-peak voltage.

Receiver Electrical Interface (over Operating Case Temperature, $V_{CC} = 3.13$ to 3.47V)

Parameter	Symbol	Minimum	Typical	Maximum	Units
Output Voltage Swing (RD+ & RD-) ¹	$V_{PP\text{-}DIF}$	0.6	-	2.0	V
Output HIGH Voltage (LOS) ²	V_{OH}	2.0	-	V_{CC} + 0.3	V
Output LOW Voltage (LOS) ²	V_{OL}	0	-	0.5	V

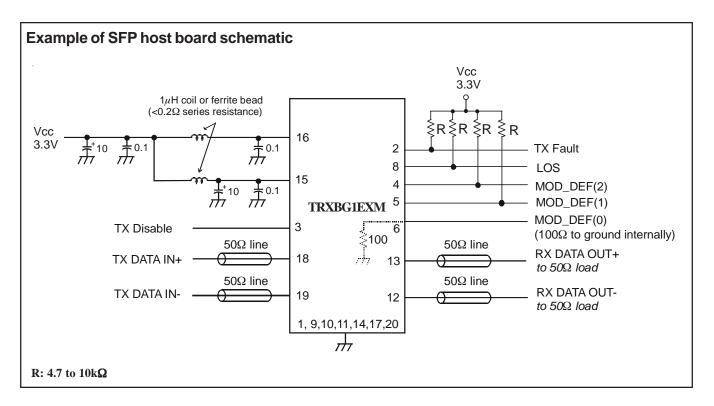

¹Differential peak-to-peak voltage across external 100 Ω load.


Electrical Power Supply Characteristics (over Operating Case Temperature, $V_{CC} = 3.13$ to 3.47V)

Parameter	Symbol	Minimum	Typical	Maximum	Units
Supply Voltage	Vcc	3.13	3.3	3.47	V
Supply Current	Icc	-	175	300	mA

Module Definition

MOD_DEF(0)	MOD_DEF(1)	MOD_DEF(2)	Interpretation by Host
pin 6	pin 5	pin 4	
TTL LOW	SCL	SDA	Serial module definition protocol



²There is an internal 4.7 to 10kΩ pull-up resistor to *VccT*.

³Open collector compatible, 4.7 to $10k\Omega$ pull-up resistor to Vcc (Host Supply Voltage).

²Open collector compatible, 4.7 to 10kΩ pull-up resistor to Vcc (Host Supply Voltage).

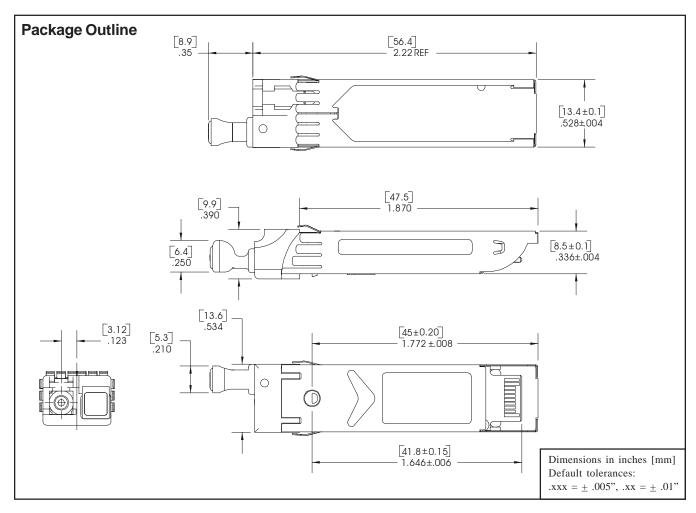
Application Notes

Electrical interface: All signal interfaces are compliant with the SFP MSA specification. The high speed DATA interface is differential AC-coupled internally and can be directly connected to a 3.3V SERDES IC. All low speed control and sense output signals are open collector TTL compatible and should be pulled up with a $4.7 - 10 \mathrm{k}\Omega$ resistor on the host board.

Loss of Signal (LOS): The Loss of Signal circuit monitors the level of the incoming optical signal and generates a logic HIGH when an insufficient photocurrent is produced.

TX Fault: The output indicates LOW when the transmitter is operating normally, and HIGH with a laser fault including laser end-of-life. TX Fault is an open collector/drain output and should be pulled up with a $4.7 - 10 k\Omega$ resistor on the host board. TX Fault is non-latching (automatically deasserts when fault goes away).

TX Disable: When the TX Disable pin is at logic HIGH, the transmitter optical output is disabled (less than -45dBm).


Serial Identification and Monitoring: The module definition of SFP is indicated by the three module definition pins, MOD_DEF(0), MOD_DEF(1) and MOD_DEF(2).

Upon power up, MOD_DEF(1:2) appear as NC (no connection), and MOD_DEF(0) is TTL LOW. When the host system detects this condition, it activates the serial protocol (standard two-wire I²C serial interface) and generates the serial clock signal (SCL). The positive edge clocks data into the EEPROM segments of the SFP that are not write protected, and the negative edge clocks data from the SFP. This device does not require clock stretching.

The serial data signal (SDA) is for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The supported monitoring functions are temperature, voltage, bias current, transmitter power, average receiver signal, all alarms and warnings, and software monitoring of TX Fault/LOS. The device is internally calibrated.

The data transfer protocol and the details of the mandatory and vendor specific data structures are defined in the SFP MSA, and SFF-8472, Rev. 9.4.

Power supply and grounding: The power supply line should be well-filtered. All $0.1\mu\text{F}$ power supply bypass capacitors should be as close to the transceiver module as possible.

Ordering Information

Model Name	Temperature Range	Latch Color	Typical W	Distance	
			Tx	Rx	Distalle
TRXBG1EXNBBMH	- 5°C to +70°C	Blue	1310nm	1550nm	40km
TRXBG1EXNBYM5	- 5°C to +70°C	Yellow	1550nm	1310nm	40km
TRXBG1EXNABMH	- 40°C to +85°C	Blue	1310nm	1550nm	40km
TRXBG1EXNAYM5	- 40°C to +85°C	Yellow	1550nm	1310nm	40km

Optical Communication Products, Inc.

6101 Variel Avenue, Woodland Hills, CA 91367, Tel.: 818-251-7100, FAX: 818-251-7111, www.ocp-inc.com

Optical Communication Products, Inc. reserves the right to make changes in equipment design or specifications without notice. Information supplied by Optical Communication Products, Inc. is believed to be accurate and reliable. However, no responsibility is assumed by Optical Communication Products, Inc. for its use nor for any infringements of third parties, which may result from its use. No license is granted by implication or otherwise under any patent right of Optical Communication Products, Inc.

©2006, Optical Communication Products, Inc.

5